

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: DAA(18CS0516) Course & Branch:B.Tech - CSIT

Year & Sem: III-B.Tech & I-Sem Regulation: R18

UNIT –I INTRODUCTION , DISJOINT SETS

1	a	What is an algorithm?	[L1][CO1]	[2M]						
1	b	Write the For LOOP general format.	[L1][CO1]	[2M]						
	c	Arrange the following function in increasing order.	[L1][CO1]	[2M]						
		n,logn,n ² ,n ³ ,nlogn,2 ⁿ		[=1,1]						
	d	Solve that $1/2n^2-3n=\theta(n^2)$.	[L3][CO1]	[2M]						
	e	List out the steps that need to design an algorithm.	[L1][CO1]	[2M]						
2	a	What is asymptotic notation? Explain different types of notations with examples?	[L2][CO1]	[6M]						
	b	Illustrate an algorithm for (i) Finding factorial of n number (ii)Sum of n natural	[L2][CO1]	[4M]						
	~	numbers	[][]	[••••]						
3	Sir	mplify steps involved in performance analysis with example.	[L2][CO1]	[10M]						
4	a	What do you mean by algorithm? List some of the properties of it?	[L1][CO1]	[5M]						
	b	Apply the Master's theorem. Solve the following Recurrence relations	[L3][CO1]	[5M]						
		i) $T(n) = 4T(n/2) + n$ i000i) $T(n) = 2T(n/2) + n\log n$								
5	a	Classify the rules of Pseudo code for Expressing Algorithms?	[L2][CO1]	[7 M]						
	b	Solve the given function -If $f(n) = 5n^2 + 6n + 4$ then prove that $f(n)$ is $O(n^2)$.	[L3][CO1]	[3M]						
6	a	Explain the collapsing rule for Find algorithm with example.	[L6][CO1]	[5M]						
	b	Solve the following Recurrence relation	[L3][CO1]	[5M]						
		i) $T(n) = 4T(n/3) + n^2$ ii) $T(n) = 6T(n/3) + n^2 \log n$								
7		stimate the recurrence relations:	[L6][CO1]	[10M]						
		i) $x(n) = x(n-1) + 5$ for $n > 1$, $x(1) = 0$								
		ii) $x(n) = 3x(n-1)$ for $n>1$, $x(1) = 4$								
	iii) $x(n)=x(n/2) + n$ for $n>1$, $x(1) = 1$ (solve for $n=2^k$)									
		iv) $x(n)=x(n/3) + 1$ for $n>1$, $x(1) = 1$ (solve for $n = 3^k$)	FY #35 00 43							
8	a	Determine in steps of Union and Find algorithms with example.	[L5][CO1]	[5M]						
		Explain space complexity in detail.	[L2][CO1]	[5M]						
9	a	Define disjoint sets? Explain different types of disjoint sets operations with	[L2][CO1]	[6 M]						
		examples?	FT 215 CO 13	F 43 47						
	b	Solve the following recurrence:	[L3][CO1]	[4M]						
10	Г	i) $T(n)=7T(n/3) + n^2$ ii) $T(n)=3T(n/2) + n$								
10	Explain two types of recurrences in detail with suitable example. [L6][CO1] [10M]									

UNIT –II BASIC TRAVERSAL AND SEARCH TECHNIQUES, DIVIDE AND CONQUER

1	a Define the divide and conquer method.	[L1][CO2]	[2M]								
1	b Give the recurrence relation of divide-and-conquer.	[L1][CO2]	[2M]								
		[L1][CO2]	[2M]								
	d Write the recurrence relation for quick sort and analyze time complexity?		[2M]								
		[L1][CO2]	[2M]								
	e Find the In order and preorder and post order tree traversal for the following binary tree.	[L1][CO2]									
	billary tree.										
	2 3										
	4 5										
2	What is divide and conquer strategy? Explain the working strategy of Binary Search	[L2][CO2]	[10 M]								
	and find element 60 from the below set by using the above technique: { 10, 20,										
	30,40,50, 60,70}. Analyze time complexity for binary search.										
3	Analyze the working strategy of merge sort and illustrate the process of merge sort	[L4][CO2]	[10M]								
	algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.										
4	$\begin{bmatrix} 9 & 4 & 6 & 7 \end{bmatrix} \begin{bmatrix} 7 & 6 & 2 & 1 \end{bmatrix}$	[L6][CO2]	[10 M]								
	$A = \begin{bmatrix} 7 & 8 & 1 & 4 \\ 4 & 3 & 2 & 6 \end{bmatrix}$ $B = \begin{bmatrix} 3 & 9 & 0 & 3 \\ 2 & 5 & 2 & 9 \end{bmatrix}$. Create Stassen's matrix multiplication on A										
	and B find the Resultant matrix										
5	a Sort the records with the following index values in the ascending order using quick	[L2][CO2]	[5 M]								
	sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6.										
	b Write and explain the control abstraction for Divide and conquer.	[L2][CO2]	[5M]								
6	Explain the Strassen's algorithm for matrix multiplication and analyze time	[L5][CO2]	[10M]								
	complexity.										
7	Explain DFS algorithm and trace out minimum path for DFS for the following	[L5][CO2]	[10 M]								
	example.										
	H										
	$A \longrightarrow B \longrightarrow C \longrightarrow G$										
		ET ATECOAT	F4.0% #7								
8	Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for	[L2][CO2]	[10M]								
	given set of numbers 12, 33, 23, 43, 44, 55, 64, 77and 76.	EX CIECCOS									
9	Elaborate BFS algorithm and trace out minimum path for BFS for the following	[L6][CO2]	[10M]								
	example.										
	$(A) \longrightarrow (B) \longrightarrow (C)$										
	G										
	D F E										
10	a Compare between BFS and DFS techniques.	[L4][CO2]	[4M]								
	b Solve an algorithm for techniques of binary trees with examples.	[L3][CO2]	[6M]								
			[]								

UNIT –III GREEDY METHOD, DYNAMIC PROGRAMMING

1	a What is meant	hy feasible s	olutior	1?						[L1][CO3]	[2M]
1	 a What is meant by feasible solution? b Write the general algorithm for Greedy method control abstraction. 										[2M]
	c What is Knaps			j					-	[L1][CO3] [L1][CO3]	[2M]
	d Define optimal solution.									[L1][CO3]	[2M]
	e Define dynamic programming.									[L1][CO3]	[2M]
2	Construct an opt			Knaı	sack	proble	m, wł	nere i	n=7, M=15 and	[L3][CO3]	[10M]
	(p1,p2,p3,p4,p5,p6			-		-					. ,
	by using Greedy st										
3	Explain any one ap	plication of	greedy	metho	d with	an exa	ample?			[L2][CO3]	[10M]
4	Elaborate job seque	encing with o	deadlin	es by i	ısing g	reedy	method	wher	e given the jobs,	[L6][CO3]	[10M]
	their deadlines and										
	profit.										
									7		
		Jobs	J1	J2	J3	J4	J5	J6			
		Deadlines	5	3	3	2	4	2			
		Profits	200	180	190	300	120	100			
5	o Evaloin in data									[[2][CO2]	(EMI)
3	a Explain in detab Simplify the al							ne cor	mnlexity	[L2][CO3] [L4][CO3]	[5M]
6	Construct an algori									[L4][CO3]	[3NI] [10M]
	all pairs of vertices		_		-					[Eo][eos]	[101/1]
	p	5		F8		, •					
		(D _		<u> </u>	- (2))				
		`	T \			$\nearrow oot$					
				В	/12	.					
			1			5	5				
	(1) - , (3)										
7	Apply the minimum spanning tree of the following graph using Kruskals algorithm and										[10M]
	prims algorithm .	spw				, 8P	<i>w.</i> 5111 <i>B</i> .		w.s w.ge w		
	prinis argorium . (b) 8 C 7 (d)										
		4					9				
	a 11 14 (e)										
			7	6			10				
	8 h 10										
8	Explain 0/1 knapsack problem by using dynamic programming with an examples.									[L2][CO3]	[10M]
9	Analyze the minimum cost tour forgiven problem using travelling sales person								[L4][CO3]	[10M]	
	Analyze the minimum cost tour forgiven problem using travelling sales person Concepts.								o person	. 111	. ·-·-j
	Concepts.										
	10										
		1		5		V A					
			5	20	13		10				
	6 15 9 8 10										
	12										
				1	12	4					
10	Build any one appl	i4i 0.1			1001111	4		1		[L6][CO1]	[10M]

UNIT –IV BACKTRACKING, BRANCH AND BOUND

1	a	State Sum of Subsets problem.	[L1][CO4]	[2M]				
	b	What is graph coloring?	[L1][CO4]	[2M]				
	c	Define state space tree.	[L1][CO4]	[2M]				
	d	Define Branch-and-Bound method.	[L1][CO4]	[2M]				
	e	Choose the searching techniques that are commonly used in Branch-and-Bound	[L1][CO4]	[2M]				
		method.						
2	Ex	plain sum of subsets by using backtracking with an example.	[L5][CO4]	[10M]				
3	Di	scuss the Hamiltonian cycle algorithm with step by step operation with example.	[L6][CO4]	[10 M]				
4	a	Explain the principles of FIFO branch and bound.	[L2][CO4]	[5M]				
	b	Recall the graph coloring. Explain in detail graph coloring with an example.	[L5][CO4]	[5M]				
5	a	Explain the properties of LC-search.	[L2][CO4]	[5M]				
	b	Give brief description about the general method of branch and bound.	[L2][CO4]	[5M]				
6	Se	lect any one application of backtracking with an example.	[L3][CO4]	[10M]				
7	Co	onstruct the LC branch and bound search. Consider knapsack instance n=4 with	[L6][CO4]	[10 M]				
	ca	pacity M=15 such that $pi=\{10,10,12,18\}$, $wi=\{2,4,6,9\}$ apply LC branch and bound						
	tec	chnique.						
8		mplify 0/1 knapsack problem and design an algorithm of LC Branch and Bound and	[L4][CO4]	[10M]				
	find the solution for the knapsack instance of $n = 4$, $(p1, p2, p3, p4) = (10, 10, 12, 18),$							
	(w	1, w2, w3, w4) = (2, 4, 6, 9) and $M = 15$.						
9	Ev	raluate 0/1 knapsack problem using branch and bound with an example.	[L5][CO4]	[10M]				
10								

Course Code: 18CS0516

UNIT –V NP-HARD AND NP-COMPLETE PROBLEMS

1	a	Define class P.	[L1][CO5]	[2M]		
	b	Define NP- hard problem.	[L1][CO5]	[2M]		
	c	What is Non-deterministic algorithm?	[L1][CO5]	[2M]		
	d	What is a decision problem?	[L1][CO5]	[2M]		
	e	Define NP.	[L1][CO5]	[2M]		
2	Co	onstruct the non-deterministic algorithms with example.	[L3][CO5]	[10M]		
3		stinguish between deterministic and non-deterministic algorithms.	[L4][CO5]	[10M]		
4	Construct the non-deterministic sorting algorithm and also analyze its complexity. [L6][CO5] [10]					
5	Explain the class of P and NP with example? [L2][CO5] [10M					
6	Differentiate between NP- complete and NP-hard problems? [L4][CO5]					
7	State and explain cook's theorem? [L2][CO5]					
8	Estimate the strategy to prove that a problem steps of NP-hard. [L6][CO5]					
9		ustrate the satisifiability problem and write the algorithm.	[L2][CO5]	[10M]		
10	Determine the classes NP-hard and NP-complete problem with example. [L5][CO5] [10]					

Prepared by: Mr. V GOPI