SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: DAA(18CS0516)
Year \& Sem: III-B.Tech \& I-Sem

Course \& Branch:B.Tech - CSIT
Regulation: R18

UNIT -I
 INTRODUCTION, DISJOINT SETS

1	a	What is an algorithm?	[L1][CO1]	[2M]
	b	Write the For LOOP general format.	[L1][CO1]	[2M]
	c	Arrange the following function in increasing order. $\mathrm{n}, \operatorname{logn}, \mathrm{n}^{2}, \mathrm{n}^{3}, \mathrm{nlogn}, 2^{\mathrm{n}}$	[L1][CO1]	[2M]
	d	Solve that $1 / 2 \mathrm{n}^{2}-3 \mathrm{n}=\boldsymbol{\theta}\left(\mathrm{n}^{2}\right)$.	[L3][CO1]	[2M]
		List out the steps that need to design an algorithm.	[L1][CO1]	[2M]
2	a	What is asymptotic notation? Explain different types of notations with examples?	[L2][CO1]	[6M]
	b	Illustrate an algorithm for (i) Finding factorial of n number (ii)Sum of n natural numbers	[L2][CO1]	[4M]
3	Simplify steps involved in performance analysis with example.		[L2][CO1]	[10M]
4	a	What do you mean by algorithm? List some of the properties of it?	[L1][CO1]	[5M]
	b	Apply the Master's theorem. Solve the following Recurrence relations i) $\mathrm{T}(\mathrm{n})=4 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \quad \mathrm{i} 000 \mathrm{i}) \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \log \mathrm{n}$	[L3][CO1]	[5M]
5	a	Classify the rules of Pseudo code for Expressing Algorithms?	[L2][CO1]	[7M]
	b	Solve the given function -If $\mathrm{f}(\mathrm{n})=5 \mathrm{n}^{2}+6 \mathrm{n}+4$ then prove that $\mathrm{f}(\mathrm{n})$ is $0\left(\mathrm{n}^{2}\right)$.	[L3][CO1]	[3M]
6	a	Explain the collapsing rule for Find algorithm with example.	[L6][CO1]	[5M]
	b	Solve the following Recurrence relation i) $T(n)=4 T(n / 3)+n^{2}$ ii) $T(n)=6 T(n / 3)+n^{2} \log n$	[L3][CO1]	[5M]
7	Estimate the recurrence relations: i) $\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{n}-1)+5$ for $\mathrm{n}>1, \mathrm{x}(1)=0$ ii) $\mathrm{x}(\mathrm{n})=3 \mathrm{x}(\mathrm{n}-1)$ for $\mathrm{n}>1, \mathrm{x}(1)=4$ iii) $x(n)=x(n / 2)+n$ for $n>1, x(1)=1$ (solve for $n=2^{k}$) iv) $x(n)=x(n / 3)+1$ for $n>1, x(1)=1$ (solve for $n=3^{k}$)		[L6][CO1]	[10M]
8	a	Determine in steps of Union and Find algorithms with example.	[L5][CO1]	[5M]
	b	Explain space complexity in detail.	[L2][CO1]	[5M]
9	a	Define disjoint sets? Explain different types of disjoint sets operations with examples?	[L2][CO1]	[6M]
	b	Solve the following recurrence: i) $T(n)=7 T(n / 3)+n^{2}$ ii) $T(n)=3 T(n / 2)+n$	[L3][CO1]	[4M]
10	Explain two types of recurrences in detail with suitable example.		[L6][CO1]	[10M]

UNIT -II

BASIC TRAVERSAL AND SEARCH TECHNIQUES, DIVIDE AND CONQUER

UNIT -III
 GREEDY METHOD, DYNAMIC PROGRAMMING

UNIT -IV
 BACKTRACKING, BRANCH AND BOUND

1	a	State Sum of Subsets problem.	[L1][CO4]	[2M]
	b	What is graph coloring?	[L1][CO4]	[2M]
	c	Define state space tree.	[L1][CO4]	[2M]
	d	Define Branch-and-Bound method.	[L1][CO4]	[2M]
	e	Choose the searching techniques that are commonly used in Branch-and-Bound method.	[L1][CO4]	[2M]
2	Explain sum of subsets by using backtracking with an example.		[L5][CO4]	[10M]
3	Discuss the Hamiltonian cycle algorithm with step by step operation with example.		[L6][CO4]	[10M]
4	a	Explain the principles of FIFO branch and bound.	[L2][CO4]	[5M]
	b	Recall the graph coloring. Explain in detail graph coloring with an example	[L5][CO4]	[5M]
5	a	Explain the properties of LC-search.	[L2][CO4]	[5M]
	b	Give brief description about the general method of branch and bound.	[L2][CO4]	[5M]
6	Select any one application of backtracking with an example. Construct the LC branch and bound search. Consider knapsack instance $\mathrm{n}=4$ with capacity $\mathrm{M}=15$ such that $\mathrm{pi}=\{10,10,12,18\}$,wi=\{2,4,6,9\} apply LC branch and bound technique.		[L3][CO4]	[10M]
7			[L6][CO4]	[10M]
8	Simplify $0 / 1$ knapsack problem and design an algorithm of LC Branch and Bound and find the solution for the knapsack instance of $n=4,(p 1, p 2, p 3, p 4)=(10,10,12,18)$, $(\mathrm{w} 1, \mathrm{w} 2, \mathrm{w} 3, \mathrm{w} 4)=(2,4,6,9)$ and $\mathrm{M}=15$.		[L4][CO4]	[10M]
$\mathbf{9}$ Evaluate 0/1 knapsack problem using branch and bound with an example. $\mathbf{1 0}$ Distinguish in detail 8-queens problem using back tracking with state space tree.			[L5][CO4]	[10M]
			[L4][CO4]	[10M]

UNIT -V
 NP-HARD AND NP-COMPLETE PROBLEMS

1	a	Define class P.	[L1][CO5]	[2M]
	b	Define NP- hard problem.	[L1][CO5]	[2M]
	c	What is Non-deterministic algorithm?	[L1][CO5]	[2M]
	d	What is a decision problem?	[L1][CO5]	[2M]
	e	Define NP.	[L1][CO5]	[2M]
2	Construct the non-deterministic algorithms with example.		[L3][CO5]	[10M]
3	Distinguish between deterministic and non-deterministic algorithms.		[L4][CO5]	[10M]
4	Construct the non-deterministic sorting algorithm and also analyze its complexity.		[L6][CO5]	[10M]
5	Explain the class of P and NP with example?		[L2][CO5]	[10M]
6	Differentiate between NP- complete and NP-hard problems?		[L4][CO5]	[10M]
7	State and explain cook's theorem?		[L2][CO5]	[10M]
8	Estimate the strategy to prove that a problem steps of NP-hard.		[L6][CO5]	[10M]
9	Illustrate the satisifiability problem and write the algorithm.		[L2][CO5]	[10M]
10	Determine the classes NP-hard and NP-complete problem with example.		[L5][CO5]	[10M]

